首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5409篇
  免费   540篇
  国内免费   1篇
  2021年   65篇
  2020年   43篇
  2019年   45篇
  2018年   74篇
  2017年   71篇
  2016年   113篇
  2015年   179篇
  2014年   187篇
  2013年   232篇
  2012年   264篇
  2011年   308篇
  2010年   176篇
  2009年   173篇
  2008年   260篇
  2007年   256篇
  2006年   223篇
  2005年   235篇
  2004年   238篇
  2003年   236篇
  2002年   246篇
  2001年   120篇
  2000年   108篇
  1999年   90篇
  1998年   70篇
  1997年   73篇
  1996年   62篇
  1995年   75篇
  1994年   39篇
  1993年   53篇
  1992年   75篇
  1991年   109篇
  1990年   89篇
  1989年   78篇
  1988年   70篇
  1987年   65篇
  1986年   50篇
  1985年   76篇
  1984年   68篇
  1983年   56篇
  1982年   44篇
  1981年   51篇
  1980年   54篇
  1977年   48篇
  1976年   34篇
  1975年   43篇
  1974年   49篇
  1973年   46篇
  1971年   43篇
  1970年   33篇
  1969年   36篇
排序方式: 共有5950条查询结果,搜索用时 93 毫秒
51.
We have further characterized the 5-HT3 receptors in rat and rabbit tissues by evaluating the binding of the 5-HT3 receptor ligand, [3H]GR67330 to homogenates of rabbit ileum, rat ileum and rat brain (entorhinal cortex). In each tissue specific [3H]GR67330 binding represented a single saturable, high affinity site (Kd = 0.14, 0.18, 0.076 nM in rabbit ileum, rat ileum and rat brain respectively). The densities of sites present in rabbit and rat ileum were similar to that present in rat brain (Bmax = 63, 47, 72 fmol/mg protein in rabbit ileum, rat ileum and rat brain respectively).

In each tissue, 5-HT3 receptor agonists and antagonists potently competed for [3H]GR67330 binding. Derived inhibition constants were similar in rat ileum and brain. However marked differences in IC50s were apparent for rabbit ileum compared with rat brain or ileum. These were most apparent with agonists. Thus, mCPBG [1-(meta-chlorophenylbiguanide)], phenylbiguanide, 5-HT and 2-methyl 5-HT were at least 5 times less potent to inhibit [3H]GR67330 binding in rabbit ileum than rat brain. The most pronounced differences were evident with phenylbiguanide and mCPBG which were 70 and 300 times less potent in the rabbit ileum respectively compared with the rat tissues. These differences were unlikely to be due to depletion effects because tissue combination experiments (rabbit ileum and rat brain) yielded biphasic inhibition curves for phenylbiguanide with affinities for each component similar to those in the individual tissues. Antagonist affinities also varied between the rabbit and rat tissues, although less markedly. Amongst the antagonists, the most marked differences were apparent with SDZ 206–830 and quipazine each being 10 times less potent to inhibit binding to rabbit than rat tissue.

Hill coefficients for inhibition of binding varied with tissue. In rat brain, as previously described for [3H]GR67330, Hill coefficients for agonist (and quipazine) inhibition of binding were greater than unity. This was less marked in rat and rabbit ileum tissues.

The present studies provide further evidence for species variation in 5-HT3 receptors.  相似文献   

52.
The effect of non-insulin-dependent diabetes mellitus (i.e., NIDDM; type 2 diabetes) on the levels of functional mitochondrial anion transport proteins has been determined utilizing a chemically-induced neonatal model of NIDDM. We hypothesized that moderate insulin deficiency exacerbated by the insulin resistance, which is characteristic of NIDDM, would cause changes in mitochondrial anion transporter function that were similar to those we have previously shown to occur in insulin-dependent diabetes mellitus (i.e., IDDM; type 1 diabetes) (Arch. Biochem. Biophys. 280: 181–191, 1990). Our experimental approach consisted of the extraction of the pyruvate, dicarboxylate and citrate transport proteins from the mitochondrial inner membrane with Triton X-114 using rat liver mitoplasts (prepared from diabetic and control animals) as the starting material, followed by the functional reconstitution of each transporter in a proteoliposomal system. This strategy permitted the quantification of the functional levels of these three transporters in the absence of the complications that arise when such measurements are carried out with intact mitochondria (or mitoplasts). We found that experimental NIDDM did not cause significant changes in the extractable and reconstitutable specific (and total) transport activities of the pyruvate, dicarboxylate, and citrate transporters. These results are in marked contrast to our previous findings obtained using rats with IDDM and negated our hypothesis. The present results, in combination with our earlier findings, allow us to conclude that insulin plays an important role in the regulation of mitochondrial anion transporter function. Accordingly, in this model of NIDDM, where the level of insulin is not profoundly deficient, transporter function is unaltered, whereas in IDDM, where a profound insulinopenia exists, transporter function is altered. Furthermore, the present studies suggest that in the neonatal model of NIDDM the three mitochondrial transporters investigated are neither affected by, nor are they the sites of the well documented hepatic post-receptor insulin resistance which is characteristic of this disease.  相似文献   
53.
Summary Human S-protein is a serum glycoprotein that binds and inhibits the activated complement complex, mediates coagulation through interaction with antithrombin III and plasminogen activator inhibitor I, and also functions as a cell adhesion protein through interactions with extracellular matrix and cell plasma membranes. A full length cDNA clone for human S-protein was isolated from a lambda gt11 cDNA library of mRNA from the HepG2 hepatocellular carcinoma cell line using mixed oligonucleotide sequences predicted from the amino-terminal amino acid sequence of human S-protein. The cDNA clone in lambda was subcloned into pUC18 for Southern and Northern blot experiments. Hybridization with radiolabeled human S-protein cDNA revealed a single copy gene encoding S-protein in human and mouse genomic DNA. In addition, the S-protein gene was detected in monkey, rat, dog, cow and rabbit genomic DNA. A 1.7 Kb mRNA for S-protein was detected in RNA from human liver and from the PLC/PRF5 human hepatoma cell line. No S-protein mRNA was detected in mRNA from human lung, placenta, or leukocytes or in total RNA from cultured human embryonal rhabdomyosarcoma (RD cell line) or cultured human fibroblasts from embryonic lung (IMR90 cell line) and neonatal foreskin. A 1.6 Kb mRNA for S-protein was detected in mRNA from mouse liver and brain. No S-protein mRNA was detected in mRNA from mouse skeletal muscle, kidney, heart or testis.  相似文献   
54.
55.
56.
57.
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号